Global Solar Radiation Prediction using Artificial Neural Network Models for New Zealand
نویسندگان
چکیده
In this study, nonlinear autoregressive recurrent neural networks with exogenous input (NARX) were used to predict global solar radiation across New Zealand. Data for nine hourly weather variables recorded across New Zealand from January 2006 to December 2012 were used to create, train and test Artificial Neural Network (ANN) models using the Levenberg−Marquardt (LM) training algorithm, with global solar radiation as the objective function. In doing this, ANN models with different numbers of neurons (from 5 to 250) in the hidden layer as well as different numbers of delays were experimented with, and their effect on prediction accuracy was analyzed. Subsequently the most accurate ANN model was used for global solar radiation prediction in ten cities across New Zealand. The predicted values of hourly global solar radiation were compared with the measured values, and it was found that the mean squared error (MSE) and regression (R) values showed close correlation. As such, the study illustrates the capability of the model to forecast radiation values at a later time. These results demonstrate the generalization capability of this approach over unseen data and its ability to produce accurate estimates and forecasts.
منابع مشابه
Global Solar Radiation Prediction for Makurdi, Nigeria Using Feed Forward Backward Propagation Neural Network
The optimum design of solar energy systems strongly depends on the accuracy of solar radiation data. However, the availability of accurate solar radiation data is undermined by the high cost of measuring equipment or non-functional ones. This study developed a feed-forward backpropagation artificial neural network model for prediction of global solar radiation in Makurdi, Nigeria (7.7322 N lo...
متن کاملEstimation of Monthly Mean Daily Global Solar Radiation in Tabriz Using Empirical Models and Artificial Neural Networks
Precise knowledge ofthe amount of global solar radiation plays an important role in designing solar energy systems. In this study, by using 22-year meteorologicaldata, 19 empirical models were tested for prediction of the monthly mean daily global solar radiation in Tabriz. In addition, various Artificial Neural Network (ANN) models were designed for comparison with empirical models. For this p...
متن کاملEstimating and modeling monthly mean daily global solar radiation on horizontal surfaces using artificial neural networks
In this study, an artificial neural network based model for prediction of solar energy potential in Kerman province in Iran has been developed. Meteorological data of 12 cities for period of 17 years (1997–2013) and solar radiation for five cities around and inside Kerman province from the Iranian Meteorological Office data center were used for the training and testing the network. Meteorologic...
متن کاملارزیابی دقت روشهای شبکه عصبی مصنوعی و عصبی- فازی در شبیهسازی تابش کل خورشیدی
Solar radiation is an important climate parameter which can affect hydrological and meteorological processes. This parameter is a key element in development of solar energy application studies. The purpose of this study is the assessment of artificial intelligence techniques in prediction of solar radiation (Rs) using artificial neural network (ANN) and adaptive neuro-fuzzy inference system (AN...
متن کاملEnergy Consumption and Heat Storage in a Solar Greenhouse: Artificial Neural Network Method
In this study, the performance of a solar greenhouse heating system equipped with a linear parabolic concentrator and a dual-purpose flat plate solar collector was investigated using the Artificial Neural Network (ANN) method. The heat required for the greenhouse at night hours was supplied by the heat stored in the storage tank by the solar system during the sunshine time and an auxiliary he...
متن کامل